
LongStoryGAN: A Chronological Illustration Generation Framework For
Documents

Yiqing Xie, Yanbo Xu and Zhuoxuan Peng
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
{yxieal, yxubu, zpengac}@connect.ust.hk

Abstract

Story visualization is a newly proposed task that com-
bines computer vision with natural language processing.
While neural image generation methods have enabled story
visualization from image descriptions in previous works,
they are not well suited to general text documents. To close
this gap, we present a chronological illustration genera-
tion framework, LongStoryGAN, which expands the input
of story visualization to general documents. Our framework
contains two major modules: the text summarization mod-
ule and the image generation module. The text summariza-
tion module applies the TextRank algorithm [8] to extract
sentences in chronological order that contain the action
of character. The image generation module is based on a
modified state-of-the-art model on story visualization, Sto-
ryGAN [7], which generates a series of images describing
these sentences. Extensive experiments show that LongSto-
ryGAN is able to illustrate a relatively long story using im-
ages. In particular, we compare both modules with their
individual ablations on corresponding datasets. Both qual-
itative and quantitative results show that our modules out-
perform their own ablation.

1. Introduction

Storytelling has been one of the major ways by which
humans pass knowledge, spread information, and is crucial
in the entire history. During the process, we humans always
visualize those texts using our pre-learned knowledge. With
the rapid development in computer science areas including
Computer Vision, Natural Language Processing, a natural
question to ask is whether the machine could perform such
a task automatically. In this work, we propose LongStory-
GAN, a chronological illustration generation framework for
documents to describe the task that given a relatively long
story or text document, a series of images would be gener-
ated to describe it.

(a) The result generated by LongStoryGAN

(b) The ground truth

Figure 1: The input story is ”Pororo and Crong agrees to
what Loopy asked them of. The woods are covered with
snow. The sky is blue and clear.”,”Loopy went away to get a
drink for her friends Pororo and Crong. They are in Loopy’s
house. There is a plant flower on the table.”,”Pororo raised
the plant flower that was on the table. Crong is watching the
plant right next to him. They are in Loopy’s house.”,”Loopy
brings some drinks for her friends Pororo and Crong. They
are in Loopy’s house.”,”Pororo asks Loopy if Pororo can
have the flower. Pororo Crong and Loopy are drinking at a
table in Loopy’s house.”

There are some major problems in this task. The first
one is Large and noisy input space. In previous works
[7], images are generated from a series of descriptive sen-
tences. There are normally only 5-10 sentences in a full
story. An example of input data is shown in the caption of
Figure 1. However, the scale of general documents such
as fairy tales or news reports is much larger, with around
50-100 sentences in each document. As a result, when tak-
ing generally long documents with complex sentences as
inputs, it will take extremely long training time if we illus-
trate the entire story by giving every sentence a correspond-
ing image. Even if we use a text summarization approach
to extract salient sentences [8], the sentences in the sum-
marization results are not guaranteed to present in chrono-

1



logical order, which makes the illustrations presented in a
random order. Therefore, we need a text summarization
module to extract salient sentences in chronological order
from the documents.

The second challenge is Image Inconsistency. If there
are no message passing between the generation process of
subsequent sentences, the generated images may be incon-
sistent. For example, a character in different images of a
story may look different. Therefore, it requires a sequential
model structure, which carries information about previous
states and passes it on.

To solve the two problems mentioned above, we divide
our framework into two modules. The first one is the text
summarization module, which takes the long story and sum-
marizes it into a few sentences which are considered as im-
portant and representative among the whole story. The sec-
ond part is the image generation module, which generates
images from the summarized text using a GAN model. The
module is based on StoryGAN, a state-of-the-art model on
story visualization. The result of our model as well as the
ground truth is shown in 6. It can be seen that our model
can generate relatively consistent images with correct char-
acters, their positions and background.

To sum up, our contributions are: (1) Extend the scope of
text-to-image generation task from salient sentences to gen-
eral documents. (2) Propose a novel model that contains a
text summarization module and a image generation module.
(3) Use comprehensive experiments on human evaluation to
validate the quality of images generated by our model.

2. Related Work
2.1. Natural Language Processing

Natural Language Processing (NLP) is one of the ma-
jor research areas in Computer Science. Approaches in-
volve deep learning has been wildly used and performances
of such models are quite promising. Tasks include transla-
tion, sentiment analysis, text understanding are well imple-
mented. In this task, we need to summarize a relatively long
story, which is also a major problem in NLP.

2.2. Generative Adversarial Net

The Generative Adversarial Net (GAN) is a widely
used structure of neural networks in the field of image
generation.[2] A regular GAN is comprised of a generator,
which generates images with a realistic look, and a discrim-
inator, which distinguish the generated images from real
images. In every training loop, fake images are produced
in the generator and passed to the discriminator for differ-
entiation. The target of the generator is to maximize the
error rate of the discriminator, while the discriminator are
updated to prevent the mistakes. Finally the generator is ex-
pected to output images that the discriminator cannot distin-

guish. In our task another discriminator is added for better
understanding of the generated images.

2.3. Text-to-image Generation

Text-to-image generation refers to the machine learning
task in which a single image is generated from a segment of
text in natural languages. [10] In recent years, GANs have
been playing an essential role in the development of this
task. Although a high quality is achieved in the state-of-
the-art works, this task only focuses on single image gen-
eration. Nevertheless, in dialogue-to-image generation, the
input text is dialogue transcripts instead of a single sentence
[11], which is close to our idea.

2.4. Text-to-video Generation

Text-to-video generation is another task similar to ours
since a video can be seen as a sequence of continuous im-
ages with a chronological order. Current methods to this
task is only able to generate small video clips with static
backgrounds. [3] In contrast, in our task the continuity is
not considered but backgrounds are supposed to be diversi-
fied across different images. In addition, like text-to-image
generation, one video usually corresponds to only one sen-
tence.

2.5. Story Visualization

Story visualization is a newly proposed task that inspires
this paper. Its target is to generate a sequence of images to
illustrate a story with multiple sentences. [7] The problem is
that it works only on a group of processed sentences instead
of a natural paragraph. In contrast, LongStoryGAN expands
the range of stories for image generation to any paragraphs
with a chronological order. It keeps the consistency of the
story while still generates corresponding images for each
individual sentences.

3. Data

Three datasets are used in our project, one for story sum-
marization and two for image generation.

3.1. Wikipedia 2014 + Gigaword 5

Wikipedia 2014 + Gigaword 5 is a large-scaled text
dataset used in GloVe, an unsupervised algorithm for word
embeddings.[9] Every words in the dataset are transformed
into several vectors with different dimensions. In our work,
the embedding vectors are then utilized to extract main in-
formation from a paragraph so that a concise summary can
be produced. The approximate vocabulary size is 400,000,
and each of them corresponds to a 50, 100, 200 and 300
dimensional vectors.

2



Figure 2: A sample group of images and sentences in the
Pororo-SV dataset

3.2. CLEVR-SV

CLEVR-SV is a modified version of the CLEVR
dataset[4], consisting of pictures containing only geomet-
ric objects and no backgrounds. These objects are classified
into three shapes, two materials, eight colors and two sizes.
Each picture contains at most four objects, and four pic-
tures form a group corresponding to a “paragraph”. Para-
graphs are not written in natural languages, but sequences
of attributes and positions of the objects, so it is only used
to train the second half of the GAN. The dataset contains
10000 training groups and 3000 testing groups.

3.3. Pororo-SV

Like CLEVR-SV, Pororo-SV is also adapted from an-
other dataset. It contains more complex pictures, the video
frames of a cartoon called Pororo. In the original Pororo-
QA dataset[6], one description is written for every second
of the video, and Pororo-SV selects one picture from every
second to associate with the description, so that the conti-
nuity between the pictures is interrupted but the context is
maintained. Each paragraph consists of five sentences, but
the absence of conjunction words makes it kind of unnatu-
ral . In total, there are 13000 training paragraphs and 2336
testing paragraphs. A sample from this dataset is shown in
Figure 2

4. Methods
To illustrate a relatively long story, we use a text summa-

rization model combined with the StoryGAN model. Given
a story, the summarizer will output the most important sen-
tences and pass the result to the image generation module,

Figure 3: The Architecture of Text Summarizer

which will accept the entire story as input and generate im-
ages only for the sentences regarded as important and rep-
resentative.

4.1. Text Summarization

Long paragraphs with complex expressions are more
commonly seen in real life, which makes graphical illus-
trations of text even harder. This problem can be solved
by summarizing the text, leaving or creating sentences that
represent mean ideas of the entire story. Although it is pos-
sible to embed the summarizer into the GAN model later,
making them separately will reduce the difficulty of train-
ing and easier for debugging and adjustments, as a GAN
model takes a very long time to train.

Currently, there are 2 types of summarization models.
The extractive summarization method will identify impor-
tant sentences and then extract those out form the original
paragraph. The extracted sentences will be identical to the
ones in the given text. The second method is abstract sum-
marization, whose output will be new sentences written by
the model according to the original text. Both methods are
sequence to sequence model and they could accomplish the
task. However, the text data in Pororo consists of simple
sentences with limited vocabulary. For example, a typical
sentence is Pororo will be similar to ”Pororo wears orange
glasses and a hat covering Pororo’s ears.” Moreover, we
find that abstract method may create new words that are out
of range, which may not be understandable for StoryGAN.
Therefore, we use an extract summarization model based on
TextRank Algorithm in this task.

4.1.1 TextRank Algorithm

TextRank is a Graph-based algorithm deciding the impor-
tance in one or multiple documents.[8] Every sentence will
be regarded as a note with the note value representing the
sentence. By observing the relationship of each pair of sen-
tences, a value will be computed, which represents the sim-
ilarity, connectivity and other aspects of these sentences.
Later those value will be ranked thus giving the rank of sen-
tences in the story.

3



Figure 4: The Entire Structure of Our Model

4.1.2 TextRank with Pre-trained Encoder

The framework of the text summarization module of
LongStoryGAN is shown in 3. The TextRank Algorithm
will rank all sentences in the entire story and output them by
rank. With a pre-trained encoder, every sentence in the doc-
ument will be vectorized.[5] To rank those texts, the simi-
larity between all vectors will be computed by a similarity
matrix. The algorithm will work because after vectoriza-
tion, the model will have an understanding of those sen-
tences and if they are similar, they must be important in the
paragraph. This method will largely reduce the size of text
and works especially well in children’s stories and simple
stories in pororo with repeated expressions.

Traditionally each word will be represented with a
unique vector and one sentence could be represented by the
concatenation of these vectors. The method is straightfor-
ward, but it may do well in finding sentences with similar
words instead of acquiring a understanding. By using a pre-
trained encoder, the texts will be transformed into hidden
stats that contain some features of the sentence. This pro-
cess could be considered as understanding the texts, giving
a much better result. To rank those texts, the similarity be-
tween all vectors will be computed by a similarity matrix.
This method will largely reduce the size of text and works
especially well in children’s stories and simple stories in
Pororo with repeated expressions. After the summarization,
the input story will be replaced by a few sentences that are
considered as important and representative. And the sum-
marized text will be given to the GAN model. The model
will then generate a representative illustration of the whole
story, which is the goal of this task.

4.2. Image Generation

For image generation, we utilize a state-of-the-art model,
StoryGAN but make several modifications. We name the
modified model LongStoryGAN. Here are some major rea-

sons for choosing StoryGAN instead of other GAN models.
Firstly, the GAN model should support text to image gen-
eration. Secondly, regular GAN models will generated im-
ages separately according to the given sentences, not being
able to provide global consistency across the story, which is
crucial in graphical illustration. After comparing many net-
works, StoryGAN suits our demand best. The LongStory-
GAN takes in a group of sentences S = [s1, s2, . . . , sT ] and
for each sentence si one corresponding picture x̂i is gener-
ated. Thus, the output of LongStoryGAN is a sequence of
pictures X̂ = [x̂1, x̂2, . . . , x̂T ] of the same length with S. It
is worth noting that the sentences S are embedding vectors
encoded by a universal sentence encoder rather than raw
text.
As shown in Figure 3, LongStoryGAN consists of four
parts: (i) a story encoder that compress S to a single hidden
vector h0 (ii) a context encoder that combines each sentence
st with its context and outputs a gist vector ot (iii) an image
generator that generates an image x̂t from the gist vector ot
(iv) an image discriminator to examine the quality of each
image and a story discriminator to assess the consistency
among all the images.

4.2.1 Story Encoder

The story encoder is basically a multi-layer fully connected
network, which maps the input story S to a single hidden
vector h0. h0 is sampled from a normal distribution for
randomness and will be passed to the context encoder as
the initial hidden state. The idea is that h0 is supposed to
serve as a summary vector containing main information of
the story, so that the global consistency is kept in later pro-
cess.

4.2.2 Context Encoder

Since multiple images with logical connection are the target
in this model, a deep RNN with a two-layer structures is

4



used to preserve and transmit the contextual information.
The lower layer is a sequence of GRU and the other consists
of Text2Gist cells, a variation of GRU specifically designed
for this task. The process can be described as the following:

it, gt = GRU (st, gt−1) (1)

ot, ht = Text2Gist (it, ht−1) (2)

where gt and ht are the hidden states of GRU and
Text2Gist respectively. ot is called the gist vector, since
it combines the contextual information in ht−1 and the sen-
tence information in it. Then it is used for image generation
in the next step.

4.2.3 Image Generator

The image generator will not be specified since it can be any
neural network that outputs an image, such as a multi-layer
neural network or a network with transposed convolution
layers. In consideration of performance, the original struc-
ture in StoryGAN is preserved.

4.2.4 Discriminators

In addition to the quality of a single image, the coherence of
images in a group and the consistency between the images
and the story are also important criteria for our task. There-
fore, two discriminators are used in the model and the final
loss will combine both.
The image discriminator computes the difference between
each group of generated images and their corresponding
ground truth, while the story discriminator has a more com-
plicated structure. After each image is transformed into
a feature vector, all the vectors in a group are then con-
catenated into a single vector Eimg(X). Using the same
method, the group of sentences are also transformed into a
vector Etext(S). A linear transformation of the element-
wised product of Eimg(X) and Etext(S) will be the final
scores, which is denoted by D(X,S). The fomula is shown
below:

D(X,S) = W (Eimg(X)⊙ Etext(S)) + b (3)

where W and b are learn-able parameters and ⊙ here
means element-wise multiplication.
The scores computed with fake and real images are then
compared to indicate the degree of global consistency.

4.2.5 Training Method

Since the model is large and composed of different net-
works, the training process is divided into two parts: the
text encoder and the image generator are trained separately
using different datasets. The text encoder is expected to

produce a vector that fully covers the information and pre-
serves the order, while the image generator should generate
images both discriminators cannot distinguish.
Therefore, the following training strategy is used:

1. Train the text encoder with raw story-sentences pairs
(S0, [s1, s2, . . . , sT ])

2. Train the LongStoryGAN with groups of sentences
([s1, s2, . . . , sT ]) and real images ([x1, x2, . . . , xT ])

After the training process, stories will be inputted into the
entire model. The generated images will be evaluated man-
ually to ensure the universality of the model.

5. Experiments
In this section, we evaluate our model in two parts. First,

we evaluate the text summarization model to see if can ex-
tract the descriptive sentences from the document. Then,
we evaluate the image generation model to see if it can gen-
erate clear image that follows the descriptions we extracted
in the first phase. The experiments are done on one toy
dataset, CLEVR-SV and one cartoon dataset, Pororo-SV. To
the best of our knowledge, there is no previous works that
focus on neither descriptive sentence extraction nor video
generation, so our comparisons are mainly to ablated ver-
sions of our proposed models. For a fair comparison, all
models use the same structure of the image generator, Con-
text Encoder and discriminators when applicable.

5.1. Text Summarization Evaluation

In this section, we provide qualitative evaluation of the
quality of the text summarization module. The compared
method is:

LongStoryGAN-order: It is the ablation of our model
that takes off the order-persistent module, which extract the
sentences in chronological order. Instead, it ranks the sen-
tences in the order of degree of importance.

5.1.1 Experiment Results

We compare the results generated by our model with the hu-
man extracted result, noted as Ground truth to show that
our model effectively select the sentences that describing
the motion of the characters and keep them in a chronolog-
ical order. The results are shown in Table 1.

We can see that LongStoryGAN extracts more relevant
sentences than LongStoryGAN-order. This is because the
order-persistent module takes sentences that spread more
evenly in each part of the whole document. In this way,
the descriptive sentences from all the parts can be extracted.
In contrast, LongStoryGAN-order tend to extract sentences
that squeeze in a specific part of the document, which hurts

5



Ground truth:
A wolf happened to pass by the lane where the three little pigs lived;
The wolf opened his jaws very wide and bit down as hard as he could,
but the first little pig escaped and ran away to hide with the second little
pig.
The wolf continued down the lane and he passed by the second house
His big jaws clamped down on nothing but air and the two little pigs scram-
bled away as fast as their little hooves would carry them.
they made it to the brick house and slammed the door closed before the
wolf could catch them.
The wolf huffed, huffed, and he puffed, puffed; but he could not blow the
house down.
So the little piggy put on the cover again, boiled the wolf up, and the three
little pigs ate him for supper.

LongStoryGAN:
A wolf happened to pass by the lane where the three little pigs lived;
The wolf opened his jaws very wide and bit down as hard as he could,
but the first little pig escaped and ran away to hide with the second little
pig.
The wolf continued down the lane and he passed by the second house made
of sticks;
and he saw the house, and he smelled the pigs inside, and his mouth began
to water as he thought about the fine dinner they would make. (X)
His big jaws clamped down on nothing but air and the two little pigs scram-
bled away as fast as their little hooves would carry them.
The wolf hadn’t eaten all day and he had worked up a large appetite chasing
the pigs around and now he could smell all three of them inside and he knew
that the three little pigs would make a lovely feast. (X)
The wolf huffed, huffed, and he puffed, puffed; but he could not blow the
house down.

LongStoryGAN-order:
The wolf opened his jaws very wide and bit down as hard as he could,
but the first little pig escaped and ran away to hide with the second little
pig.
Not by the hairs on our chinny chin chin! (X)
His big jaws clamped down on nothing but air and the two little pigs scram-
bled away as fast as their little hooves would carry them.
The wolf showed his teeth and said: (X)
Then I’ll huff, and I’ll puff, and I’ll blow your house down. (X)
The wolf hadn’t eaten all day and he had worked up a large appetite chasing
the pigs around and now he could smell all three of them inside and he knew
that the three little pigs would make a lovely feast. (X)
So the little piggy put on the cover again, boiled the wolf up, and the three
little pigs ate him for supper.

Table 1: The text summarization results of LongStory-
GAN, LongStoryGAN-order and the ground truth. The
original corpus is the fairytale ”the three little pigs”. For
each of the methods, we extract 8 sentences from the cor-
pus. The wrong sentences extracted are marked with (X)

the overall salience. Another difference between LongSto-
ryGAN and LongStoryGAN-order is that LongStoryGAN
sorts the sentences in chronological order. In contrast, the
sentences extracted by LongStoryGAN-order are in random
order, which makes subsequent sentences inconsistent.

5.2. Image Generation Evaluation

In this section, we provide qualitative evaluation of the
quality of the image generation module. the compared
method is:

Ground truth

LongStoryGAN

-Gist
LongStoryGAN

Figure 5: One generated sample chosen from the experi-
ment results on the CLEVR-SV dataset. Each story has four
images.

LongStoryGAN-Gist: In LongStoryGAN-Gist, the
Text2Gist cell in LongStoryGAN is replaced by simple con-
catenation of the encoded story and description feature vec-
tors. The structure of the discriminator and image generator
are kept as the same.

Methods LongStoryGAN LongStoryGAN-Gist
SSIM 0.672 0.641

Table 2: SSIM score of different methods on CLEVR-SV
dataset

5.2.1 Experiment Results on CLEVR-SV

The CLEVR-SV dataset contains a set of images and de-
scriptions of the layout. Specifically, four rules were used
to construct the CLEVR-SV: (i) The maximum number of
objects in one story is limited to four. (ii) Objects are made
of metallic/rubber with eight different colors and two dif-
ferent sizes. (iii) The object shape can be cylinder, cube or
sphere. (iv) The object is added one at a time, resulting in a
four-image sequence per story. We generated 10, 000 image
sequences for training and 3, 000 for testing. For our task,
the story is the layout descriptions of objects.

The results are shown in Figure 5. The forth image
in the sequence generated by LongStoryGAN-Gist is plau-
sible. We hypothesize that using trivial concatenation in
LongStoryGAN-Gist cannot effectively balance the infor-
mation contained in the current sentence and the whole
story. In contrast, the generation results of LongStoryGAN
is almost the same as that in ground truth. This validates the
effectiveness of Text2Gist component in our model, which
encodes the information in the current sentence while keep-
ing tracking on the progress of the whole story.

To quantitatively evaluate our model, we also compare
the Structural Similarity Index (SSIM) score between the

6



generated images and ground truth.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (4)

where mux is the average of x and sigmax is the standard
deviation. c1 and c2 are two variables to stabilize the divi-
sion with weak denominator. SSIM is used for measuring
the similarity between two images. Here, it is used to de-
termine whether the generated images are consistent with
the input description. The experiment results are shown
in Table 2. We can see that LongStoryGAN outperforms
LongStoryGAN-Gist in terms of SSIM score. It again vali-
dates the utility of the Text2Gist module.

5.2.2 Experiment Results on Pororo-SV

The Pororo-SV dataset contains a series of cartoon frames
with manually written descriptions. In our experiments, we
use five continuous images to visualize a single story. We
encode the text by the Universal Encoder [1] with default
parameters, which produces an 128-dim vector representa-
tion for each sentence.

Two visualized stories from the compared methods and
the ground truth are given in Figure 6. By comparing the
results, we can see that LongStoryGAN-Gist tend to gen-
erate plausible results in the first image of each story. For
example, it generates the wrong characters in the first image
on Story 1 (the clock is omitted), and generates the wrong
background in the first image of Story 2 (generates the snow
background instead of the land). Such flaws result in the in-
consistency of the story. In contrast, the first image in Story
generated by LongStoryGAN is more similar to the ground
truth, in terms of both characters and positions. LongSto-
ryGAN also generates the correct background in Story 2.
This shows the advantage of using the output of the Story
Encoder as first hidden state over random initialization.

Similarly, we compare the SSIM score between the
generated image and the ground truth. In this task,
LongStoryGAN significantly outperforms LongStoryGAN-
Gist, which is consistent with the qualitative result analy-
sis.

6. Conclusion
6.1. Project Summerization

We proposed a new machine learning task, chronologi-
cal illustration generation from document, which broadened

Methods LongStoryGAN LongStoryGAN-Gist
SSIM 0.369 0.328

Table 3: SSIM score of different methods on Pororo-SV
dataset

Ground truth

LongStoryGAN

-Gist
LongStoryGAN

(a) Story 1

Ground truth

LongStoryGAN

-Gist
LongStoryGAN

(b) Story 2

Figure 6: Two generated samples chosen from the experi-
ment results on the Pororo-SV dataset. Each story has five
images.

the application of image generation by combining GAN
with multiple NLP techniques. More specifically, text sum-
marization using the TextRank Algorithm is applied to the
story preprocessing so that the task is transformed to story
visualization. Then a revised StoryGAN generated under-
standable images based on the summarized text. Our model
improved the accuracy of image generation when the input
is an entire paragraph instead of separated sentences.

6.2. Future Improvements and Applications

The main limitation is data at this point. With the Proro
dataset, our model could only generate cartoon images. It
would be better if data which contain real life event and
text could be used for training, enabling the model to gener-
ate vivid pictures. Such data could be generated by giving
text discrimination to videos like what Proro did. Also, the
current model have no attention in the event or object. Al-
though the story has been summarized, the model could do
better if main events in each sentences could gain attention
from the model.

Such a model could be used in auto-image illustration.
For example, a writer who just finished a story could use this
model for automated illustration. It might also be helpful in
situation like crime scene picturization. The most exciting
aspect about this work is that it gives a machine the ability to
imagine things from its experiences, more accurately, from
the data it read and things it learned, just like us humans do.

7



References
[1] D. M. Cer, Y. Yang, S. yi Kong, N. Hua, N. Limtiaco, R. S.

John, N. Constant, M. Guajardo-Cespedes, S. Yuan, C. Tar,
Y.-H. Sung, B. Strope, and R. Kurzweil. Universal sentence
encoder. ArXiv, abs/1803.11175, 2018.

[2] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Ben-
gio. Generative adversarial networks. CoRR, abs/1406.2661,
2014.

[3] J. He, A. M. Lehrmann, J. Marino, G. Mori, and L. Sigal.
Probabilistic video generation using holistic attribute con-
trol. In V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss,
editors, Computer Vision - ECCV 2018 - 15th European Con-
ference, Munich, Germany, September 8-14, 2018, Proceed-
ings, Part V, volume 11209 of Lecture Notes in Computer
Science, pages 466–483. Springer, 2018.

[4] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L.
Zitnick, and R. B. Girshick. CLEVR: A diagnostic dataset
for compositional language and elementary visual reasoning.
CoRR, abs/1612.06890, 2016.

[5] P. Joshi and A. Vidhya. Introduction to text summarization
using the textrank algorithm, May 2019.

[6] K. Kim, M. Heo, S. Choi, and B. Zhang. Deepstory: Video
story QA by deep embedded memory networks. In C. Sierra,
editor, Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Mel-
bourne, Australia, August 19-25, 2017, pages 2016–2022.
ijcai.org, 2017.

[7] Y. Li, Z. Gan, Y. Shen, J. Liu, Y. Cheng, Y. Wu, L. Carin,
D. E. Carlson, and J. Gao. Storygan: A sequential condi-
tional gan for story visualization. 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 6322–6331, 2018.

[8] R. Mihalcea and P. Tarau. TextRank: Bringing order into
text. In Proceedings of the 2004 Conference on Empirical
Methods in Natural Language Processing, pages 404–411,
Barcelona, Spain, July 2004. Association for Computational
Linguistics.

[9] J. Pennington, R. Socher, and C. D. Manning. Glove: Global
vectors for word representation. In Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–1543,
2014.

[10] S. E. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele,
and H. Lee. Generative adversarial text to image synthesis.
CoRR, abs/1605.05396, 2016.

[11] S. Sharma, D. Suhubdy, V. Michalski, S. E. Kahou, and
Y. Bengio. Chatpainter: Improving text to image generation
using dialogue. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Workshop Track Proceedings. OpenRe-
view.net, 2018.

8


