The effect of delay and momentum in
Asynchronous Stochastic Gradient Descent

Yanbo Xu, Zhiyang Wu, Guillaume Wang
EPFL, Switzerland

Abstract—Training large machine learning models on large
datasets is notoriously computationally heavy. When multiple
workers are available, a common algorithm to perform the
training is Asynchronous Stochastic Gradient Descent (ASGD),
wherein gradients of the loss on mini-batches are computed by
workers and added to the model weights by the server. The
workers are not fully synchronized with the server, which enables
speedup by parallelization. However, this asynchronicity causes
the gradients to be computed with a “delay” compared to the
actual model on the server. In this work, we simulate a simple
version of ASGD allowing us to study the effect of delay only.
Based on experiments on real-life data, we draw the following
insights on the behavior of ASGD. We confirm the adverse
effect of delay on the training process. We observe that past a
certain threshold, delay may prevent training entirely. For large
delays, using momentum improves the performance of ASGD
dramatically.

I. INTRODUCTION

In modern machine learning practice, with the advent of
deep learning on big data, the task of fitting models such as
neural networks becomes more and more computationally ex-
pensive. To deal with the massive amount of training data, the
most well-established optimization algorithm for deep learning
is Stochastic Gradient Descent (SGD), which operates by only
using a mini-batch of data at each iteration. In order to further
speed up the training by leveraging distributed computing
systems, a natural extension of SGD to multiple workers is
Asynchronous Stochastic Gradient Descent (ASGD) [[1].

In ASGD, workers compute the gradients over their own
mini-batches of data, fetch and add their gradients to the global
model stored on the server, and then immediately continue
their training process on the next mini-batch. Previous work
has shown that ASGD can significantly improve training effi-
ciency of deep neural networks [2] compared to (synchronous)
SGD. However, it also suffers from the problem of “delayed
gradient” [3]. Indeed, when a worker adds its gradient g(w;)
(calculated based on global model weights w;) to the global
model stored on the server, the global model may have already
been updated 7 times by other workers and becomes w; .

Mathematically, adding g(w;) to w4, does not make sense.
In this paper, we want to study the effect of such “delays”
on the training results. We conduct experiments to simulate
a multiple-worker environment, and by controlling number
of workers, we can control the length of delay. We further
investigate whether adding momentum to ASGD can mitigate
the negative effects of delayed gradients, and finally we
compare the results of ASGD to SGD with drop-out, to learn
whether ASGD acts as a regularizer.

In Section [[I} we present our experimental setup. In Sec-
tion [Il, we present our results. We discuss the limitations
of our experiments and propose directions for future work in
Section Finally, the paper is concluded with Section [V]

II. EXPERIMENTAL SETUP

We consider the following simple ASGD setting [3]. A
central server trains a machine learning model, e.g., a neural
network, aided by m workers. Each worker ¢ possesses a copy
of the whole model with its own set of weights, w®, which
may not be the same as the one stored on the central server,
W, at all times. At each timestep, the server communicates
with one worker:

« The worker sends to the server the gradients it computed
since the previous communication;

o The server updates the model by taking one step of
’stochastic gradient descent”, using the gradients it re-
ceived;

o The server sends to the worker the updated model
weights, as well a new mini-batch of training data.

Furthermore, the server communicates with the workers se-
quentially, i.e., at time ¢ the server communicates with worker
i = t mod m. This scheme clearly simulates the ASGD
algorithm described in the introduction.

In this project, we simulate the behavior of ASGD on a
single machine using a simplified sequential scheme, making
our experiments feasible with limited resources. However, this
requires storing m + 1 distinct copies of the entire network,
which somewhat limits the scope of our experiments to small
models. Moreover, the practical computational advantage of
ASGD compared to SGD is totally lost, since all computations
are performed on the same machine. To properly compare the
performances of different choices of m, it should be taken into
account that the real training time when using m workers is
approximately equal to the total compute time divided by m
— assuming no communication overhead. We emphasize that
our main focus is to investigate the effect of delay on the
training process itself, which is why we will report the total
computation time in our experiments.

We benchmark the performance of ASGD for different
choices of the relevant hyperparameters using a simple toy
task, training a small convolutional neural network for clas-

sification of the CIFAR10 dataset [4]. The network consists
of

« A convolutional layer with 6 output layers and kernel size
5 X b;

e A max-pool layer with kernel size 2 x 2;

e A convolutional layer with 16 output layers and kernel
size 5 X 5;

o Three fully-connected layers of respective widths 120, 84
and 10 (the number of classes in the classification task).

Each layer is followed by a ReLU activation applied element-
wise. The loss function optimized with ASGD is the cross-
entropy loss of the predictions. We use mini-batches of 4
samples.

Pytorch code for the ASGD simulator, as well as to repro-
duce our experiments, can be found in the appendix to this
report.

ITI. RESULTS
A. Effect of delay

We first compare ASGD with m workers for different values
of m, and with synchronous SGD (corresponding to m = 1),
shown in Fig.

We find that as we use more and more workers, i.e., we
introduce more delay, the loss decreases more slowly with
respect to the total compute time. The negative effect of delay
is however relatively mild for small values of m (the difference
in accuracy between m = 1 and m = 10 is of the order of 5%
at any time during training), which justifies the use of ASGD
in practice, since the real compute time is the total compute
time divided by m.

Furthermore, for very large values of m, the model seems
not to improve at all over training (m = 100 in the reported
experiment). It is striking that in this case, the loss of the model
remains constant, and that the accuracy remains constant at
the level of random guessing, as opposed to varying without
converging.

B. Effect of momentum

In ASGD, we add the gradient computed by the local worker
g(w;) to the global model w;,, which makes the gradient
less reliable especially when 7 is large. By introducing a
momentum term, we expect to reduce the negative effect when
the global model receive an outdated gradient, and therefore
mitigate the negative effect of delayed gradient in ASGD
training. The result is shown in Fig.

By adding the momentum term to ASGD and comparing it
with ASGD without momentum, we find that when the number
of workers is relatively small (m = 1, 10, 20, 30), there is
no significant difference between these two methods. But as
we continue to increase the number of workers, i.e., introduce
more delays, adding momentum term can significantly mitigate
the negative effect of delayed gradients, which is consistent
with our expectation. Specifically, when m = 100, the model
still converges, while in ASGD without momentum, the model
fails to converge.

(b) Test accuracy

Fig. 1: Loss and test accuracy of the model for different values
of the delay m

C. Comparison of ASGD with SGD+dropout

In this section, we study whether ASGD has a similar
effect as introducing a regularizer, so we compare the result
of ASGD and SGD with drop-out, shown in Fig. [3]

The experimental result implies that using of more workers
(ie, increase m) has a very similar effect as increasing the
drop-out rate (p). One possible explanation may be that ASGD
and drop-out both introduce some degree of randomness to the
model training, which slows down the convergence speed. And
as the degree of randomness increases, the training becomes
unstable and leads to an unsatisfactory training result in our
experiments.

The result also suggests that ASGD may be able to prevent
overfitting as a regularizer.

IV. DIRECTIONS FOR FUTURE WORK

In future work, it would be interesting to explore the
following directions.

o Verifying our observations with more reliability: The
experimental results presented in this paper, while already
providing good insights about the behavior of ASGD
and the effect of delay, are too limited to make a strong
quantitative statement.

We observed some variability across runs, due to the
randomness in the draws of mini-batches of training data.
For example, in some runs, the phenomenon where the

training with 1 workers training with 1 workers

22 — AsGD
ASGD with momentum 060

" 030 — AsGD
——— ASGD with momentum

0 1 2 3 4 5 [o 1 2 3 4 5 [

(a) Loss (m = 1)

training with 50 workers

(b) Test accuracy (m = 1)

training with 50 workers

— AsGD
22 ASGD with momentum

test accuracy

— ASGD
ASGD with momentum

0 1 2 3 4 5 [1) 1 2 3 4 5 [

(c) Loss (m = 50)

training with 100 workers

(d) Test accuracy (m = 50)

training with 100 workers

S — 56D 035
23 ASGD with momentum

015
18 /\ — ASGD
010 ASGD with momentum

0 1 2 3 4 5 [0 1 2 3 4 5 [
epochs epochs

(e) Loss (m = 100) (f) Test accuracy (m = 100)

Fig. 2: Comparison of the loss and test accuracy between
ASGD and ASGD with momentum, for different values of
the delay m

model remains constant for large m occurs already for
m = T70.

Therefore, in order to convincingly confirm our observa-
tions, it would be necessary to run the experiments several
times and to plot the mean loss and accuracy, as well as
their variance.

o Investigating the effect of the batch size: A theoretical

analysis of ASGD would be hindered by the stochasticity
coming from the draw of the mini-batches. So from
a theoretical perspective, it could be interesting as a
first step to study the full-batch case, or Asynchronous
Gradient Descent. (This would also remove stochasticity
from the experiments, making them easier to interpret.)
Note that Asynchronous Gradient Descent is not practical
because each worker would need to do a lot of work
in order to compute the gradient of the full-batch loss
(this is the same reason why SGD was introduced as a
replacement of full-batch GD in the first place).
Beyond its computational advantage, training neural net-
works with SGD was found to yield better generalization
(test accuracy) than with GD. Thus, beyond the full-batch
case, it would be interesting to investigate the effect of
the batch size, along with the delay m, on how well the
solutions found by ASGD generalize.

An obstacle to exploring these directions would be that

(b) Test accuracy

Fig. 3: Loss and test accuracy of SGD+dropout with different
values of the dropout rate p

our simulator is quite slow. We can only train networks of
limited size in reasonable time. Thus, a first step would be to
actually implement ASGD with different workers, rather than
simulating it with a single machine. This would also open the
way to experimenting with larger models, such as ResNet.

V. CONCLUSION

In this project, we investigated the effect of delay in
Asynchronous Stochastic Gradient Descent (ASGD), and how
it interacts with momentum. In order to isolate the effect of
delay, we implemented a simple version of ASGD where the
server communicates with the workers in a sequential order,
which ensures that the delay is consistently proportional to
the number of workers. Our experiments confirm the adverse
effect of delay for the training dynamics of ASGD already
observed in the literature. Furthermore, the behavior of ASGD
is dramatically improved by adding momentum.

(1]

[2]

[3]

(4]

REFERENCES

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. a.
Ranzato, A. Senior, P. Tucker, K. Yang, Q. Le, and A. Ng, “Large scale
distributed deep networks,” in Advances in Neural Information Processing
Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds.,
vol. 25. Curran Associates, Inc., 2012.

J. Chen, R. Monga, S. Bengio, and R. Jézefowicz, “Revisiting
distributed synchronous SGD,” CoRR, vol. abs/1604.00981, 2016.
[Online]. Available: http://arxiv.org/abs/1604.00981

S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z. Ma, and T. Liu,
“Asynchronous stochastic gradient descent with delay compensation for
distributed deep learning,” CoRR, vol. abs/1609.08326, 2016. [Online].
Available: http://arxiv.org/abs/1609.08326

A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1609.08326

	Introduction
	Experimental setup
	Results
	Effect of delay
	Effect of momentum
	Comparison of ASGD with SGD+dropout

	Directions for future work
	Conclusion
	References

