
EPFL ANN Project Report

Yanbo Xu(349254) Xiang Bai(337255)

1. Q-Learning

1.1. Question 1

As shown in Fig. 1, while ϵ increases from 0.0 to 0.9, the av-
erage rewards are decreasing. We can only conclude the agent
learned to play with the Opt(0.5). There would need some Vali-
dation and Test to get a better evaluation.

Figure 1. Average rewards with different ϵ

1.2. Question 2

Decreasing ϵ with a reasonable n∗ (10000, 20000) helps the
training compared with the setting with large ϵ(0.7, 0.9), which
could be observed from Fig. 2.

For n∗ = 10000 or 20000, because their ϵ will decay to 0.1, the
final average rewards will all converge to 0.4 roughly. For n∗ =
30000or40000, the final decayed will be ϵ will decrease to 2.75
and 0.4 respectively, and this will lead to a lower average reward.
It works the same as a fixed ϵ(0.1) when n∗ = 1. A fixed ϵ(0.1)
converges fast than the decay methods.

The effect of n∗ is a balance parameter for exploration and ex-
ploitation, at the fist beginning, agent should emphasizes on explo-
ration, then tends to make use of exploitation.

1.3. Question 3

Result is shown in Fig. 3.The similarity is, a fixed ϵ(0.1) con-
verges really fast. The difference is even some bigger n∗ have a
poor performance on average reward curve, they still get a quali-
fied test/validation results under both Random and Optimal play-
ers. The training results do not always accurately reflect the gener-
alization.

Figure 2. Average reward with n∗

Figure 3. Mopt and Mrand with different n∗

1.4. Question 4

After choosing 20000 as the best n∗, we observe an approximate
reverse between Mopt and Mrand (see Fig. 4). For agents trained
with a player with small ϵ (0, 0.1), we will get a high Mopt and a
low Mrand. If trained with high ϵ (0.7, 0.9), the Mopt is lower.

The reason is that when we implement the Q-learning algorithm
with a two-player-game, the game itself is not the environment in
our theory; instead, the environment is the game plus the coun-
terpart player. So every time we change player’s ϵ, the training
environment is changing accordingly.

1.5. Question 5

The highest Mopt and Mrand are 0.0(ϵopt ∈ {0, 0.1, 0.3, 0.5})
and 0.92(ϵopt = 0.9), respectively.

1



Figure 4. Mopt and Mrand with different ϵopt

Figure 5. Relation between Mbest
opt and Mbest

rand with different ϵopt

1.6. Question 6

Q1(s, a) and Q2(s, a) have different values. This is because the
environment is not the TicTacToe game itself, instead it’s the game
plus the other player’s round (See Fig. 6). So it is obvious the state
Stochasticity P a

s→s′
is changing with different Opt(ϵ).

Figure 6. The True Environment

1.7. Question 7

If ϵ is too small (such as 0), the agent does not learn to play
TicTacToe. This is because the agent will be trained under the ex-
ploitation mode. With an absolute ’greedy’ method, the agent will
get stuck with a suboptimal strategy due to lack of exploration.
When ϵ is too big (0.9), performance also suffers due to not learn-
ing from itself (it performs random actions). The effect of ϵ is to
determine the degree of exploration and exploitation. From our
trials, ϵ = 0.3 is the best value.

1.8. Question 8

As in Fig. 8, decreasing ϵ will help training compared to having
a fixed and large ϵ (0.7, 0.9). In different training stages, we focus
on exploration and exploitation differently and n∗ decides the ratio.
Giving an optimal n∗ (such as 30000), we can explore more at the
beginning, and exploit more gradually to the end.

Figure 7. Self-Practice Mopt and Mrand with different ϵ

Figure 8. Self-Practice Mopt and Mrand with different n∗

1.9. Question 9

The highest values of Mopt and Mrand is 0.0 (n∗ = 30000) and
0.92 (n∗ = 30000), respectively. (See the relation from Fig. 9.)

Figure 9. Relation between MMax
opt and MMax

rand with different n∗

1.10. Question 10

For Board1 in Fig. 9, by placing the piece on the cross position,
we would have a better chance to win, which is corresponding with
its Hotmap.



Figure 10. Board Heat map Examples

2. Deep Q-Learning

2.1. Question 11

As shown in Fig. 11, for most ϵ, the average reward increases
and the loss decreases. The average reward approaching 0 or even
becoming positive shows that the agent learns to play the game.
From the results, ϵ = 0 gives the highest average reward and the
lowest loss.

Figure 11. Average reward and loss with fixed different ϵ

2.2. Question 12

Fig. 12 shows the result. From the graph, we observe that the
loss will become more fluctuating and unstable compared with ex-
periments with a larger replace buffer. Additionally, although the
reward increases, the convergence is clearly slower.

Figure 12. Average reward and Average loss using replace buffer of size 1
and different ϵ

2.3. Question 13

Fig. 13 shows the Mopt and Mrand with different decay factor
n∗, uniformly sampled from [1, 40000]. A larger n∗ makes the
decay of ϵ slower, while a small n∗ gives faster decay. We chose
n∗ = 10000 as its result is both good and stable. Although not
shown here, having a decayed ϵ will give a better average reward
and loss curve compared with the experiments with large fixed ϵ in
Sec. 2.1.

Figure 13. Mopt and Mrand with different decay factor n∗



2.4. Question 14

With the chosen decay factor n∗ = 10000, we sample ϵopt uni-
formly from [0, 1). From the result in Fig. 14, it could be observed
that using ϵopt = 0 will harm the Mrand score, since the agent had
only seen optimal actions and thus fails when encountering unseen
actions given by the random player. On the other hand, using a
large ϵopt such as 0.9 will harm the Mopt score, since the expert
chooses random actions too often. An good expert should have a
degree of randomness, yet not too random. Values of ϵopt such as
0.2, 0.3 show good results in both Mopt and Mrand.

Figure 14. Mopt and Mrand with different ϵopt

2.5. Question 15

The best Mopt and Mrand we achieved after 20000 games is 0.0
and 0.966, respectively.

2.6. Question 16

The result in Fig. 15 shows that with proper ϵ (such as 0.1), the
agent could learn to play the game well. If ϵ = 0, the agent will
only explore limited actions, resulting in a very bad result against
both random and optimal players. If ϵ is very large such as 0.9, al-
though exploring more possible actions, the policy itself has trou-
ble learning, since most actions are not chosen from the current
policy network. A good ϵ should guarantee exploration while giv-
ing the policy network enough chance to learn from itself.

2.7. Question 17

As shown in Fig. 16, having a decay factory will improve the
performance compared the experiments with a large fixed ϵ (such
as 0.8, 0.9) in Fig. 15. To be specific, results of experiments with
decay factor will be more stable. n∗ controls the proportion of
exploration and exploitation. If decay too slow (n∗ = 40000 for
example), there will be fluctuation at the end.

2.8. Question 18

The best Mopt and Mrand we achieved after 20,000 games with
the decay factor n∗ is 0.0 and 0.932, respectively. With a fixed ϵ,
we could achieve 0.0 and 0.95.

Figure 15. Self learning, Mopt and Mrand with different ϵ

Figure 16. Self learning, Mopt and Mrand with decay

2.9. Question 19

Fig. 17 visualizes the result of self training. The agent does lean
to play the game. In the middle graph, when the board is occupied,
the Q-value is large negative, which is consistent with our design.
And the actions with the large Q-value are indeed good choice .
However, although the board is symmetrical, the Q-values are not.
This happens in self-training that the agent tends to favor some
positions since it’s learning from itself. With an optimal player, the
Q-values are actually more symmetrical (result not shown here).

Figure 17. Q-value Heatmap Examples



3. Comparing Q-Learning with Deep Q-Learning
3.1. Question 20

See Tab. 1.

Table 1. Comparing Q-learning and DQN

Q-learning DQN

Mopt 0.0 0.0
Exp Mrand 0.9 0.966

Ttrain 6500 3250

Mopt 0.0 0.0
Self Mrand 0.92 0.95

Ttrain 12250 2750

3.2. Question 21

From Tab. 1, We found that the DQN is slightly better than Tab-
ular Q-learning. The most obvious difference is the convergence
speed. As seen in the result, DQN converges much faster than Q-
learning.

Below is the process and update rule for Q-learning.

Q(s, a)← Q(s, a) + α(R+ γmaxa′Q(s′, a′)−Q(s, a))

= (1− α)Q(s, a) + α[R+ γmaxa′Q(s′, a′)]
(1)

Figure 18. Q-learning Flow Chart

Comparing with Q-Learning, DQN introduce two method, re-
play buffer and target network.

Figure 19. DQN Flow Chart

Q-learning only use the played samples once then throw it away,
which makes the training less efficient. Additionally, most of the
time there is a strong correlation between the current state and the
previous one, which is undesirable for deep networks, which need
the i.i.d. distributed data.

Randomly sampling a mini-batch of (s,a,r,s’) evenly from the
replay buffer is used to avoid the correlation of the same trajectory
data and to make convergence faster. But the replay buffer only
support off-policy algorithm.

Theoretically, the target network Qθ′ is used to solve the prob-
lem of unstable targets, which is exactly the same as the Q-net,
except that its parameters θ′ are not updated so frequently, and are
usually copied from θ′ only once after a certain period of time,
to ensure the stability of the targets. We observe a more stable
training average reward for DQN, but not on the test process. The
instability on the test especially with the optimal player may be be-
cause the sparsity of our play buffer in which most (s,a,r,s’)-s are
with a 0 return.


	. Q-Learning
	. Question 1
	. Question 2
	. Question 3
	. Question 4
	. Question 5
	. Question 6
	. Question 7
	. Question 8
	. Question 9
	. Question 10

	. Deep Q-Learning
	. Question 11
	. Question 12
	. Question 13
	. Question 14
	. Question 15
	. Question 16
	. Question 17
	. Question 18
	. Question 19

	. Comparing Q-Learning with Deep Q-Learning
	. Question 20
	. Question 21


