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Abstract

This project aims at studying the 3D spatial property of
latent space in 3D GAN, and possible disentangled repre-
sentation for such latent space.

1. Introduction
The advancement of Generative Adversarial Networks

(GAN) [4] has contributed to many important tasks. How-
ever, most usages of GAN are still confined in 2D scenario
[ [6], [7], [9], [8]] and limitations including multi-view con-
sistency of generated results restrict the potential applica-
tions.

With the recent advancement of implicit neural ren-
dering represented by NeRF [10], it has been shown that
3D consistency and geometric information could be well
learned. By combining such a technique with GAN, it is
possible to generate images with 3D propriety [ [5], [2],
[3]].

However, compared with 2D GANs, fields in 3D GAN
such as disentanglement and truly 3D-based latent space
are under studied. Since a disentangled structure and well-
formulated spatial latent space are crucial for many down-
stream tasks [ [9], [1], [13]], it could be beneficial to have
a representation with such properties.

For instance, an object could be represented with ge-
ometric and style information. Additionally, the observ-
ing position and angle will also affect the perceived result.
Therefore, it is natural to represent an image resulting from
viewing an object using three factors: geometry and style
of the object, and viewing position of the observer.

2. Related Works
In 2D GAN, the stuctrue of latent spaces has been wildly

studied. StyleGAN [6] utilize the latent space to determine
the channel mean and variance of feature maps via adaptive
instance normalization (AdaIn). StyleMapGAN [8] con-
structs a 2D latent space with local correspondence. In-
stead of using one latent space, there are generators with
multiple latent space with different information. SNI [1]

and DAT [9] include two latent spaces, controlling struc-
tural and style information, respectively.

Despite the high image quality achieved by 2D GANs,
viewing consistency is a challenging task. Recent develop-
ment of implicit neural rendering provides potential solu-
tion to this problem. NeRF [10] is one of the most promis-
ing methods, which represents a static scene using a 5D
vector-valued function. The input is the 3D location (x, y,
z) and the 2D view direction (θ, ϕ), and the output is an
emitted color c = (r, g, b) and a volume density σ. With a
given camera position, an image could be rendered by in-
tegrating the color along the ray emitted from the camera.
The density will be used as the weight for the color dur-
ing integration. Since the process is modeled with physical
constraints, the rendered images are 3D consistent.

NeRF could only represent a static scene, and one way
for generalization is using GAN. GRAF [12] combines
implicit neural rendering with GAN, PiGAN [2] utilize
SiREN to condition the implicit neural radiance filed on
the latent space. Although guaranteed with 3D consistency,
volumetric rendering requires heavy computation power
and time. Therefore, the image quality of those meth-
ods could not be compared with current state-of-the-art 2D
GANs.

Many recent approaches to this problem adopt hybrid
structures. StyleNeRF [5] applies volume render in the
early feature maps with small resolution, followed by up-
sampling blocks to generate high-resolution images. How-
ever, a regularizor based on NeRF is required to ensure 3D
consistency during upsampling. Instead of using volume
rendering in early layers, EG3D [3] performs the opera-
tion on a relatively high resolution feature map using a hy-
brid representation for 3D features generated by StyleGAN
backbone, named tri-plane, which is capable of containing
more information than an explicit structure such as voxel.
StyleSDF [11] shares a similar spirit, but uses SiREN for
its mapping network, and the mapped result is used as input
feature map followed by a style-based generator for upsam-
pling.



3. Method

3.1. Dual Tri-plane

A reasonable representation for objects is geometry and
texture. To enable better control of those properties, we
would take two tri-planes, named as geometric tri-plane
TriG and style tri-plane TriS , respectively. Each tri-plane
consists of three planes PXY , PY Z , PXZ , each of which
∈ RH×W×C , where C is the number of channels in that
plane.

For each point (x, y, z) in the tri-plane, the feature at
that point Fx,y,z ∈ RC = PXY (x, y) + PY Z(y, z) +
PXZ(x, z), where PAB(a, b) is the value of point (a, b) in
plane PAB obtained by bilinear interpolation. The process
of acquiring feature value given position is known as query
Q(x, y, z), where Q(x, y, z) = Fx,y,z .

We obtain the two tri-planes TriG and TriS by con-
ditioning on two latent spaces representing geometric and
style information, named as ZG and ZS . The latent code
sampled from ZG will be mapped using the mapping func-
tion MapG approximated by MLPs to obtain TriG, similar
to TriS . The process could be represented as follows:

TriG = MapG(zG), zG ∈ ZG (1)
TriS = MapS(zS), zS ∈ ZS (2)

3.2. 3D Latent Space

In most 2D GANs, the latent space ∈ RC . Most work
in 3D condition their latent codes on position. However,
such conditioning processes will not guarantee consistency
when rotating the camera position. In our setting, we will
render the final latent space using volumetric rendering to
ensure a real 3D latent space.

To be specific, we will render the final latent code
L(p, z) ∈ RHL×WL×C , with a camera pose p, and the la-
tent code z ∈ GorS. For each pixel in the final latent code,
a ray r(t) = p + td will be obtained to render the latent
code l(r, z), where p is the camera origin and d is the view
direction. l(r, z) is the integrated value along the ray. For
each point on the ray, we could get the corresponding fea-
ture Fx,y,z using the corresponding tri-plane generated by
latent code z using Q(r(t)). The final value for that pixel
could be calculated using the volume rendering equation:

l(r, z) =

∫ ∞

0

oz(r(t))Q(r(t))dt ∈ RC ,

where oz(r(t)) = exp−
(∫

σz(r(s))ds

)
σz(r(t))

Note that oz will be calculated using the geometric tri-plane
and used for the rendering process on both geometric and
style space.

By rendering, for a tuple of sampled values (p, zG, zS),
we will get two latent codes LG and LS ∈ RHL×WL×C ,
which will be used for further image generation.

3.3. Dual Space Generator

Given the rendered latent codes LS and LG, the gener-
ation process which outputs an image x could be described
as:

x = G(LS , LG) (3)

To make the generation process scaleable to high reso-
lution, we adopt an hybrid approach similar to [ [5], [3]].
The idea of using one space for style and another for ge-
ometric is similar to DAT. Inspired by that, we design our
generator structure as follows:

Since the style information is mostly controlled by the
mean and variance of the channel, given the rendered
style code LS ∈ RHL×WL×C , we calculate the mean
MeanLS

and variance V arLS
of that latent code, both of

which ∈ RC . These values will be used to normalize
channel-wise information using AdaIN.

On the other hand, the structural information could
be controlled by pixel-wise information in the generator.
Thus, for each layer of the feature map with shape H×W ,
we will upsample or downsample the renderd geometric la-
tent code LG to H ×W and perform pixel-wise operation
on the feature map.

4. Experiments
4.1. Tri-plane for Single Scene Fitting

To verify the capacity of tri-plane, we use a single tri-
plane to fit a static scene as in NeRF, which utilizes one
tri-plane for one scene. Besides the tri-plane, positional
encoding and fine network also play an important role in
rendering. As shown in Fig. 1, if rendered without the po-
sitional encoding Fig. 1(a), the image will lack fine details,
which is similar to the conclusion in NeRF [10]. The fine
network could provide better detail information Fig. 1(b),
but is less effective than positional encoding (Fig. 1(c)).

4.2. Dual Tri-Plane for Single Scene Fitting

We wish to have a more disentangled representation for
a single scene. Furthermore, NeRF [10] renders an image
from occupancy and rgb information, representing geomet-
ric and style information, respectively. Therefore, we uti-
lize two separate two tri-planes to render an image. From
Fig. 1(e), the result using dual tri-planes is the best even
without the fine network. This shows that having an addi-
tional tri-plane improves the capacity.

Additionally, since two tri-planes control different infor-
mation, it is possible to fix one plane and change another.
As shown in Fig. 2, when changing geometric tri-plane,
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Figure 1. Single Scene fitting using tri-plane(s).

the shape of renderd image will change (structure, trans-
parency). When changing the style tri-plane, only color
will change.

Since the the network is only used to fit one scene,
the results are not semantic meaningful when changing the
codes. However, this experiment shows the possibility of
disentangle a scene, and it also shows that the capacity of
network benefits from adding another tri-plane.

4.3. Dual Tri-plane on GAN

To make the tri-planes semantically meaningful, gen-
eralization using large dataset is one solution. Therefore,
we add tri-planes to styleGAN2 [7] framework. Fig. 3
shows the generated images trained on CelebA with reso-
lution 128.

By swapping the camera position, geometric and style
latent, we could see how each parameter influences the re-
sult.

The current result is not optimal. However, swapping
style code could give reasonable result. Fig. 4 shows that
the head pose, expression, and so on remain similar when
changing the style code.

5. Further Plans
The structure in Sec. 4.3 is not optimal for now. We will

continue on working on that part.
We plan to conduct experiments with our 3D latent

space on 2D frameworks including single-space StyleMap-

GAN, and dual-space DAT. Other types of GAN architec-
ture might also be experimented with. Additionally, pose
regularization is crucial for our task, which will be added
to the current framework. Our goal is to first study the ef-
fect of 3D latent space, then make it more disentangled.
Finally, we could extend our framework to higher image
quality such that it could be used for practical applications.
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