
Differentiable Rendering for Local Parameters
YANBO XU, Carnegie Mellon University, USA

Fig. 1. Optimization using Differentiable Rendering for local parameters. First row: optimize material albedo. Second row: optimize light center.

Physic-based rendering [2] typically refers to the process that outputs an im-
age given the known properties in the scene, such as object location, surface
shape, material property lighting condition, etc. However, the assumption
that all information about the scene is known is not always valid, which
gives rise to the field of inverse rendering [5] that infers the scene attributes
from image observations. Differentiable Rendering is one of the methods that
can achieve such an objective by utilizing gradients of the scene parameters
and optimizing them. In this project, a differentiable rendering framework
based on DIRT is implemented, with the capabilities of optimizing local
parameters such as BRDF and lighting properties. Support of more advanced
optimizers such as Adam [4] is also included. Finally, gradient certification
via numerical differentiation (finite difference) is also included.

Additional Key Words and Phrases: Physic-based rendering, Differentiable
Rendering

1 INTRODUCTION
Physic-based rendering [2] is wildly used in the fields of science, film,
and gaming to produce physically accurate images. It typically refers
to the process that outputs an image given the known properties in
the scene, such as object location, surface shape, material property
lighting condition, etc.

However, the assumption that all information about the scene is
known is not always valid, which gives rise to the field of inverse
rendering [5] that infers the scene attributes from image obser-
vations. For example, given image observations from an unknown
material, getting the exact material parameters to describe the object
is non-trivial.
Fortunately, many parameters in the forward rendering process

are differentiable [3], which makes it possible to optimize the un-
known parameters using the gradients. Generally, the parameters
can be classified into local parameters and global parameters. The
local parameters, such as shading term and BRDF, have gradients
that are easier to calculate, whereas the global parameters (object ge-
ometry, lighting location, etc) need to account for the discontinuity
and boundary conditions during differentiation.
In this project, a differentiable rendering framework based on

DIRT is implemented. It can optimize local parameters such as BRDF

Author’s Contact Information: Yanbo Xu, yanboxu@andrew.cmu.edu, Carnegie Mellon
University, Pittsburgh, Pennsylvania, USA.

and lighting properties. It supports more advanced optimizers such
as Adam [4] to enable a more stable optimization process. Finally, it
supports numerical differentiation (finite difference) to certify the
correctness of calculated gradients.

2 BACKGROUND

2.1 Local Parameters Differentiation
The throughput of a path 𝑥 , denoted as 𝑓 (𝑥, 𝜋), can be calculated
as:

𝑓 (𝑥, 𝜋) =
𝐵∏

𝑏=1
𝑓𝑠 (𝑥𝑏−1, 𝑥𝑏 , 𝑥𝑏+1;𝜋) ∗𝐺 (𝑥𝑏−1, 𝑥𝑏 ) (1)

, where 𝑓𝑠 (𝑥𝑏−1, 𝑥𝑏 , 𝑥𝑏+1;𝜋) is the BRDF term with foreshortening
terms, and the 𝐺 (𝑥𝑏−1, 𝑥𝑏 ) is the geometry term.

Take the derivative of the throughput w.r.t. local parameters, we
get:

𝜕𝑓 (𝑥, 𝜋)
𝜕𝜋

=

𝐵∑︁
𝑏=1

𝜕𝑓𝑠

𝜕𝜋
(𝑥𝑏−1, 𝑥𝑏 , 𝑥𝑏+1)

𝐵∑︁
𝑖=1,𝑖≠𝑏

𝑓𝑠 (𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1)

=

𝐵∑︁
𝑏=1

𝜕𝑓𝑠

𝜕𝜋
(𝑥𝑏−1, 𝑥𝑏 , 𝑥𝑏+1)

𝑓 (𝑥, 𝜋)
𝑓𝑠 (𝑥𝑏−1, 𝑥𝑏 , 𝑥𝑏+1;𝜋)

.
Define the score [1] for parameter 𝜋𝑖 as:

𝑠𝑖 (𝑥, 𝜋) =
𝐵∑︁

𝑏=1

𝜕𝑓𝑠
𝜕𝜋 (𝑥𝑏−1, 𝑥𝑏 , 𝑥𝑏+1)
𝑓𝑠 (𝑥𝑏−1, 𝑥𝑏 , 𝑥𝑏+1;𝜋) (2)

, one can get the gradient of local parameter 𝜋𝑖 as:
𝜕𝑓 (𝑥, 𝜋)

𝜕𝜋𝑖
= 𝑠𝑖 (𝑥, 𝜋) 𝑓 (𝑥, 𝜋) (3)

2.2 Gradient under Image Observation
Recall that ray tracing is a Monte Carlo Estimation estimation of
the integral 𝐼𝑟𝑒𝑎𝑙

𝑗
=
∫
𝑃
𝑓 (𝑥 ;𝜋)𝑑𝑥 , defined as:

𝐼 𝑗 =
1
𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑥𝑖 ;𝜋)
𝑝 (𝑥𝑖 )



2 • Yanbo Xu

, here 𝑗 indicates the pixel location in the sensor, and𝑁 is the number
of paths for each pixel.
We then can calculate the gradient of the rendering output of

pixel 𝑗 w.r.t the local parameter 𝜋𝑘 using:

𝜕𝐼 𝑗

𝜕𝜋𝑘
=

1
𝑁

𝑁∑︁
𝑖=1

𝜕𝑓 (𝑥𝑖 ;𝜋)
𝜕𝜋𝑘

1
𝑝 (𝑥𝑖 )

(4)

=
1
𝑁

𝑁∑︁
𝑖=1

𝑠𝑘 (𝑥𝑖 , 𝜋)
𝑓 (𝑥𝑖 , 𝜋)
𝑝 (𝑥𝑖 )

(5)

Assume that the loss that evaluates the difference between ob-
served image 𝐼𝑡 and rendered image 𝐼 is

𝐿 =
1
2

𝐻∗𝑊∑︁
𝑗=1

(𝐼 𝑗 − 𝐼𝑡𝑗 )
2

, then for the objective that minimizes 𝐿, we get

𝜕𝐿

𝜕𝜋𝑘
=

𝐻∗𝑊∑︁
𝑗=1

(𝐼 𝑗 − 𝐼𝑡𝑗 )
𝜕𝐼 𝑗

𝜕𝜋𝑘
(6)

.
Note that in practice, dividing the 𝜕𝐿

𝜕𝜋𝑘
by 𝐻 ∗𝑊 will make the

algorithm more robust to different resolutions.

3 DIFFERENTIABLE RENDER BASED ON DIRT
The implementation of this project is based on DIRT , where the
term 𝑓 (𝑥,𝜋 )

𝑝 (𝑥 ) is already evaluated inside the integrator. From eq.(4)
and eq.(2), we only need to calculate the score 𝑠𝑘 (𝑥𝑖 , 𝜋) of each path
𝑥𝑖 and utilize eq.(6) to get the final gradient.

3.1 Optimization of single surface (material)
Figure. 2 shows the successful optimization of Lambertian albedo
value on a single surface.

Fig. 2. SGD optimization on Lambertian albedo value, with grad on a single
surface. T is the step of the gradient descent process.

Figure. 3 shows the successful optimization of diffuse light emis-
sion value on a single surface.

Fig. 3. SGD optimization on diffuse light emission value, with grad on a
single surface. T is the step of the gradient descent process.

3.2 Optimization of multiple surfaces (material)
It is possible to optimizemultiple surfaces in the scene. Tomakemod-
ifications of materials that can be optimized easier, this framework
supports utilizing the original scene JSON file with the property
"grad" added to the material JSON config. See Sec. 7 for more detail.

Figure. 4 shows the successful optimization of Lambertian albedo
value on a multiple surface.

4 GRADIENT VERIFICATION USING FINITE
DIFFERENCE

Although less efficient and potentially noisy, the finite difference
(numerical approximation of gradients) could help us verify the
correctness of calculated gradients.

In particular, we use gradient images to verify that. The gradient
image calculated by our differentiable render can be defined as:

𝐼
𝑔𝑟𝑎𝑑

𝑘
(ℎ,𝑤) = (𝐼𝑟

ℎ,𝑤
(𝜋𝑘 ) − 𝐼𝑡

ℎ,𝑤
(𝜋𝑘 ))

𝜕𝐼𝑟
ℎ,𝑤

(𝜋𝑘 )
𝜕𝜋𝑘

, whereℎ𝑤 are the sensor index. The finite difference gradient image
is defined as:

𝐼
𝑓 𝑖

𝑘
(ℎ,𝑤) =

𝐼𝑟
ℎ,𝑤

(𝜋𝑘 + 𝜖) − 𝐼𝑟
ℎ,𝑤

(𝜋𝑘 )
𝜖

, in other words, the difference of rendered image when changing
some parameters by 𝜖 amount.

Fig. 5 shows the gradient image using our renderer and the value
estimated using finite difference. Note that they have similar values
at similar locations. The difference might be due to the noise and 𝜖
selection.



Differentiable Rendering for Local Parameters • 3

Fig. 4. SGD optimization of Lambertian albedo value, with grad on a multi-
ple surface. T is the step of the gradient descent process.

Fig. 5. Gradient image using our renderer and the value estimated using
finite difference.

5 SUPPORT OF ADAM OPTIMIZER
The naive gradient descent algorithm, although decent to the correct
direction, might be unstable when the gradient is unstable, or it
might be hard to converge when closing to the optimal solution.
Adam [4] utilizes momentum to stabilize the descending process.

Fig. 6. Persuade Code of Adam [4]

From Fig. 7, we can observe the unstable behavior of SGD when
the scene is hard to optimize. By using Adam, the optimization
process is more stable.

Fig. 7. Optimizing multiple Lambertian materials. The gradient of this one
is less stable as the largest surface requires optimization, whose variation
changes the scene largely.

6 DISTANCE-DEPENDENT LIGHT EMISSION
Typically light location is considered as a global parameter. However,
it is possible to make a "movable" light source that does not modify



4 • Yanbo Xu

geometry using:

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑥) = 𝑐

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥 − 𝑥0)
, where 𝑐 is a constant and x is the hit position, 𝑥0 is the point with
highest emission.
Fig. 8 shows the successful optimization of the light center.

Fig. 8. Optimize the center of the light source.

7 IMPLEMENTATION DETAILS

7.1 JSON-based Configuration
Setting a material to require gradient easily can be achieved with
one line of change to the DIRT JSON configure file. An example is
shown in Fig. 9.

Fig. 9. Configure Grad Using JSON

7.2 Differentiable Material Type
Compared with the original DIRT material, our framework requires
a small number of functions to add to each differentiable material
type, as shown in Fig. 10.

The update param function will update the value given gradient
(after multiplying by the learning rate). The get score functions will
return the local score at the hit position.

Fig. 10. New functions needed to support Differentiable Material.

7.3 Differentiable Renderer
Compared with the original path tracer, our differentiable path
tracer needs to accumulate the score at each hit (if the material is
differentiable), shown in Fig. 11.

Fig. 11. Differentiable Tracer.

REFERENCES
[1] Ioannis Gkioulekas, Anat Levin, and Todd Zickler. 2016. An Evaluation of Com-

putational Imaging Techniques for Heterogeneous Inverse Scattering, Vol. 9907.
685–701. https://doi.org/10.1007/978-3-319-46487-9_42

[2] James T. Kajiya. 1986. The rendering equation. In Proceedings of the 13th An-
nual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’86).
Association for Computing Machinery, New York, NY, USA, 143–150. https:
//doi.org/10.1145/15922.15902

[3] Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka,
Wadim Kehl, and Adrien Gaidon. 2020. Differentiable Rendering: A Survey.
arXiv:2006.12057 [cs.CV]

[4] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 [cs.LG]

[5] Stephen Robert Marschner. 1998. Inverse rendering for computer graphics. Ph. D.
Dissertation. USA. Advisor(s) Greenberg, Donald P. AAI9839924.

https://doi.org/10.1007/978-3-319-46487-9_42
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/15922.15902
https://arxiv.org/abs/2006.12057
https://arxiv.org/abs/1412.6980

	Abstract
	1 Introduction
	2 Background
	2.1 Local Parameters Differentiation
	2.2 Gradient under Image Observation

	3 Differentiable Render based on DIRT
	3.1 Optimization of single surface (material)
	3.2 Optimization of multiple surfaces (material)

	4 Gradient verification using Finite Difference
	5 Support of Adam Optimizer
	6 Distance-dependent Light Emission
	7 Implementation Details
	7.1 JSON-based Configuration
	7.2 Differentiable Material Type
	7.3 Differentiable Renderer

	References

